2017-2018 / PHYS0950-1

Physics of nanomaterials


20h Th, 10h Pr

Number of credits

 Master in physics (120 ECTS)4 crédits 
 Master in physics (60 ECTS)4 crédits 
 Specialised master in nanotechnology4 crédits 


Jean-Yves Raty

Language(s) of instruction

English language

Organisation and examination

Teaching in the first semester, review in January

Units courses prerequisite and corequisite

Prerequisite or corequisite units are presented within each program

Learning unit contents

1. Fundamental properties
2. Simulation techniques : Molecular dynamics - Monte Carlo sampling
3. Potentials : Classical - Semi-empirical - Pseudopotentials
4. Application to : Carbon nanotubes, Graphene, Semiconductor and Metal nanoparticles, Alloy nanoparticles

Learning outcomes of the learning unit

Knowledge of the basics of simulation methods that can be used to simulate nanomaterials.

Prerequisite knowledge and skills

Physics of materials

Planned learning activities and teaching methods

Lectures (20hrs) and exercises (10hrs)

Mode of delivery (face-to-face ; distance-learning)


Recommended or required readings

No documents are distributed.
Suggested reading include :
D.C Rapaport : The Art of Molecular Dynamics Simulation (Cambridge University Press)
P. Harrison : Quantum Wells, Wires and Dots (Wiley)
A. Mansoori : Principle of Nanotechnology (World Scientific)

Assessment methods and criteria

Oral presentation of a personal work dealing with one of the course topics.

Work placement(s)

Organizational remarks