2022-2023 / GEOL1043-1

Extractive metallurgy

Durée

30h Th, 20h Pr, 1j T. t.

Nombre de crédits

 Master : ingénieur civil en chimie et science des matériaux, à finalité (AMIR-EMest)5 crédits 
 Master : ingénieur civil des mines et géologue, à finalité5 crédits 

Enseignant

Stoyan Gaydardzhiev, Andreas Pfennig

Langue(s) de l'unité d'enseignement

Langue anglaise

Organisation et évaluation

Enseignement au premier quadrimestre, examen en janvier

Horaire

Horaire en ligne

Unités d'enseignement prérequises et corequises

Les unités prérequises ou corequises sont présentées au sein de chaque programme

Contenus de l'unité d'enseignement

The course has objective to deepen the knowledge of geological engineering students into metallurgical processes used for production of the main non-ferrous (Cu, Zn, Pb,..) and precious metals. The course covers both theoretical aspects of extractive metallurgical processes as well as refers to selected case studies. It encompasses the core units listed below which are complemented with case studies and laboratory exercises /tutorials:


  • Metallurgical processes for production of the main non-ferrous metals
  • Leaching chemistry - Kinetics and Mechanisms.
  • Hydrometallurgy of main mineral ores
  • Treatment of productive solutions after leaching
  • Electrometallurgy (electro refining)
  • Reactive extraction and liquid membranes
  • Hydrometallurgical advances in processing of "critical" metals from EoL products
The course begins with an introduction to metallurgical processes enabling the students to get aware about the challenges in metals extraction and purification processes from both technological as well as an economical points of view. The basics of chemical thermodynamics related to mineral compounds stability in aqueous systems follows. The theoretical grounds of the modern hydrometallurgy are presented together with examples of operational flowsheets for leaching common mineral ores and concentrates. Smelting and converting processes as part of the pyrometallurgy of non-ferrous and precious metals are equally discussed, followed by the basics of electrorefining, reactive extraction and liquid membrane possesses as supplementary methods. The practical application of the latter techniques is likewise illustrated as part of the contemporary strategies in recovery of "critical" metals from EoL (End-of-Life) products. Case studies with results presentation from selected hydrometallurgical operations  (heap-leaching of precious metal ores, processing of nickel laterite, Ni/Co and Cu/Co ores).
The laboratory classes include exercises relative to mineral equilibrium systems (Pourbaix diagrams using HSC Chemistry) and preparation and hydrometallurgical processing of e-waste materials with associated mass balance calculations.

Acquis d'apprentissage (objectifs d'apprentissage) de l'unité d'enseignement

By the end of this course, a student should be able to:





  • Understand the origin of metal value from process chain point of view
  • Determine the correct stoichiometry for a metal leaching reaction
  • Understand the thermodynamics of ideal mixtures and calculate phase compositions of mineral-solution systems at equilibrium
  • Understand the main stages involved in the hydrometallurgical processing of non-ferrous metal ores
  • Get aware about hydrometallurgical advances in recovery of critical metals from EoL streams
Ce cours contribue aux acquis d'apprentissage I.1, I.2, II.2, II.3, III.2, III.4, IV.2, IV.3, VI.1, VI.2, VII.1, VII.2, VII.3, VII.4, VII.5 du programme d'ingénieur civil des mines et géologue.

Savoirs et compétences prérequis

It is advisable that the students possess knowledge on raw materials value chain, chemical thermodynamics and basic principles of process engineering

Activités d'apprentissage prévues et méthodes d'enseignement

Theoretical lectures and laboratory exercises. The lab exercises involve: mineral chemical reactions (hydrometallurgy) (HSC Chemistry), preparation of "e-waste" material, leaching and solution processing. Single-drop experiments for determining mass-transfer rate.

Mode d'enseignement (présentiel, à distance, hybride)

Combinaison d'activités d'apprentissage en présentiel et en distanciel


Explications complémentaires:

Cours en présentiel mais en fonction de l'évolution de la situation épidémiologique peut changer
premier quadrimetre 2021-22,  Jeudi  pm - B52 (-1/433)

Lectures recommandées ou obligatoires et notes de cours

Habashi, F., 1999. A Textbook of Hydrometallurgy (2nd edition), Metallurgie Extractive Quebec
Havlik, T. 2008. Hydrometallurgy: Principles and Applications, Woodhead Publishing in Materials
Jergensen I, Gerald V. (Eds.). 1999, Copper Leaching, Solvent Extraction, and Electrowinning Technology-Society for Mining, Metallurgy, and Exploration (SME)
Garrels R.M. and Christ C., 1965, Solutions minerals and equilibria, New York: Harper & Row
Gupta, C. K., Krishnamurthy, Nagaiyar, 2016. Extractive metallurgy of rare earths-CRC Press

Modalités d'évaluation et critères

Examen(s) en session

Toutes sessions confondues

- En présentiel

évaluation orale


Explications complémentaires:

Situation habituelle: Examen oral (2-3 questions) sur la matiere vue en classe. 
Évaluation à distance imposée par la situation sanitaire (COVID): Examen oral à distance
Les étudiants seront interrogés en anglais

Stage(s)

pas de stage prévu

Remarques organisationnelles

Ce cours est programmé au prémier quadrimestre
Jeudi pm; B 52, - 1/433

Contacts

Stoyan GAYDARDZHIEV - Prof.
tel: 9120
B52 -1/412
s.gaydardzhiev@ulg.ac.be
 
Andreas PFENNIG - Prof.
tel: 3521
B6c, office 1/66
andreas.pfennig@ulg.ac.be