Cycle view of the study programme

Depending on your track record or your professional/research focus, some prerequisites/corequisites of your first year program might appear in bloc 2. You are therefore invited to go through the list of courses suggested in bloc 2 even if you enroll for the first time in this master program.

To complete their curriculum, students must earn or validate the 90 credits of the compulsory courses (including the master thesis) and 30 credits from the research focus.

Ideally, students enrolling in the master program should have acquired the skills and knowledge corresponding to the 40 credits in "Physics" offered as part of the bachelor program in engineering.

Compulsory Courses (B1 : 60Cr, B2 : 30Cr)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Theory</th>
<th>Labs</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIM9308-1 Physical chemistry (english language) - Bernard LEYH</td>
<td>B1 Q1 30 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: PHYS0211-3 - Mécanique quantique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN0004-1 Semiconductor devices (english language) - Benoît VANDERHEYDEN</td>
<td>B1 Q1 26 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: ELEN0076-1 - Electromagnétisme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECA0023-1 Advanced solid mechanics (english language) - JeanPhilippe PONTHOT</td>
<td>B1 Q1 26 26 [+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: MECA0036-2 - Finite Element Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECA0446-2 Continuum Mechanics (english language) - JeanPhilippe PONTHOT</td>
<td>B1 Q2 26 26 [+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: MECA0025-3 - Mécanique des fluides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIM0698-1 Physical Chemistry of Interfaces (english language) - Cédric GOMMES</td>
<td>B1 Q2 20 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental methods

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Theory</th>
<th>Labs</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECA0008-1 Microfluidics (english language) - Tristan GILET</td>
<td>B1 Q2 22 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN0074-1 Sensors, microsensors and instrumentation (english language) - Philippe VANDERBEMDEN</td>
<td>B1 Q2 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modelling and design methods

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Theory</th>
<th>Labs</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH0024-1 Modelling with partial differential equations (english language) - Maarten ARNST, Romain BOMAN</td>
<td>B1 Q1 30 20 [+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: MECA0025-3 - Mécanique des fluides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO0939-1 High performance scientific computing (english language) - Christophe GUEZAINA</td>
<td>B1 Q1 30 15 [+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2015-1 Perturbation methods (english language) - Vincent DENOEL</td>
<td>B1 Q2 15 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYST0003-1 Linear control systems (english language)</td>
<td>B1 Q1 26 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Theory - Guillaume DRION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Control system design in time domain and frequency domain - Guillaume DRION</td>
<td>- 20 [+]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projects

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Theory</th>
<th>Labs</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH0471-3 Multiphysics integrated computational project (english language) - Romain BOMAN, Christophe GUEZAINA</td>
<td>B1 TA 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corequisite: MATH2015-1 - Perturbation methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO0939-1 - High performance scientific computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH0024-1 - Modelling with partial differential equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APRI0006-1 Personal experimental project (english language) - Tristan GILET</td>
<td>B1 TA 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

University of Liège - Academic Affairs Department
Date of data: 22/12/2021 - Page 1 / 3
Final thesis (included an introduction to research methodology) - Benoît VANDERHEYDEN - [750h Proj.]

Optional courses (B2 : 30Cr)

Single focus (B2 : 30Cr)

Research focus (B2 : 30Cr)

Choose one of the three following options : (B2 : 15Cr)

Fluids (B2 : 15Cr)

- **PHYS0961-1** *Irreversibility, instabilities and chaos* - Pierre DAUBY
 B2 Q1 30 30 [+] 5

- **OCEA0071-1** *Geophysical fluid dynamics - part 1* (english language) - Jean-Marie BECKERS
 B2 Q2 30 15 [+] 5

- **PHYS3133-1** *Complex fluids and non-Newtonian flows* (english language) - Vincent TERRAPON
 B2 Q1 26 26 [+] 5

Solids (B2 : 15Cr)

- **MECA0464-1** *Large deformation of solids* (english language) - Romain BOMAN, Jean-Philippe PONTOTH - [60h Proj.]
 B2 Q1 26 26 [+] 5

- **MECA0058-1** *Fracture mechanics, damage and fatigue* (english language) - Ludovic NOELS - [75h Proj.]
 B2 Q1 30 10 [+] 5

- **MECA0516-1** *Mechanical properties of biological and bioinspired materials* (english language) - Davide RUFFONI - [4h Labo.]
 B2 Q1 26 22 [+] 5

Materials and electronics (B2 : 15Cr)

- **ELEN0047-1** *Superconductivity* (english language) - Philippe VANDERBEMDEN - [15h Labo.]
 B2 Q1 30 [+] 5

- **ELEN0446-1** *Physics of electrical insulating materials* (english language) - Philippe VANDERBEMDEN - [15h Labo.]
 B2 Q1 15 [+] 3

- **CHIM0664-1** *Electrochemical energy conversion and storage* (english language) - Nathalie JOB - [15h Labo.]
 B2 Q1 15 [+] 3

- **ELEN0069-1** *Nanoelectronics / Optoelectronics* (english language) - Benoît VANDERHEYDEN - [40h Proj.]
 B2 Q2 30 [+] 4

Choose 15 credits among : (B2 : 15Cr)

in either an internship

- **ASTG0025-1** *Internship* (english language) - Tristan GILET
 B2 TA [+] 10

This course must be independent of the master's thesis. Can be carried out in either a company or in a research center outside ULiège.

or in the list of optional courses below:

The subjects MECA0036-2, ELEN0076-1, MECA0025-3 and PHYS0211-3 are corequisite to some compulsory courses of the master program. They must be taken as a priority, unless they were already taken as part of the bachelor in engineering, or unless the corresponding knowledge and skills have been acquired previously.

- **MECA0036-2** *Finite Element Method* (english language) - Jean-Philippe PONTOTH - [40h Proj.]
 B2 Q2 26 26 [+] 5

- **ELEN0076-1** *Electromagnetism* - Benoît VANDERHEYDEN
 B2 Q1 26 26 [+] 5

- **MECA0025-3** *Fluid Mechanics* - Eric DELHEZ - [30h Proj.]
 B2 Q2 26 26 [+] 5

- **PHYS0211-3** *Quantum mechanics* - John MARTIN
 B2 Q1 26 26 [+] 5
Notice: students enrolled in a Master's degree for the first time in 2018-2019 must follow the course in the 2nd quarter. Students already enrolled in a Master's degree in 2017-2018 must follow it in the 1st quarter.

BIOL0114-4
Electronic microscopies, Part A - Philippe COMPÈRE
B2 Q2 15 - - 3

AERO0030-1
Computational fluid dynamics (english language) - Vincent TERRAPON - [10h Labo.]
B2 Q2 30 20 [+] 5

CHIM0697-1
Heterogeneous catalysis (english language) - Nathalie JOB - [10h Proj.]
B2 Q1 20 20 [+] 4

ELECO041-1
Modelling and design of electromagnetic systems (english language) - Christophe GEUZAIN
B2 Q2 26 26 - 5

MECA0027-1
Structural and multidisciplinary optimization (english language) - Pierre DUYSINX, Patricia TOSSINGS - [18h Proj.]
B2 Q1 30 12 [+] 5

MECA0029-1
Theory of vibration (english language) - JeanClaude GOLINVAL
- [30h Proj.]
B2 Q1 26 26 [+] 5

MECA0010-1
Reliability and stochastic modeling of engineering systems (english language) - Maarten ARNST - [28h Proj.]
B2 Q1 16 16 [+] 5

MECA0470-1
New methods in computational mechanics (english language) - Maarten ARNST, Eric BÉCHET, Ludovic NOELS - [40h Proj.]
B2 Q2 20 - [+] 5

MECA0518-1
Environmental hydrodynamics (english language) - Benjamin DEWALS
B2 Q2 26 26 - 5

PHYS0038-2
Introduction into polymer physics including plasturgy (english language) - Klaus KECKANTÔINE, Klaus KECKANTÔINE
B2 Q1 30 - - 4

MATH0461-2
Introduction to numerical optimization (english language) - Quentin LOUVEAUX - [25h Proj.]
B2 Q1 30 20 [+] 5

INGE0012-1
Scientific research in engineering and its impact on innovation (english language) - Rodolphe SEPULCHRE
B2 Q2 26 26 - 5

MECA0524-1
CAD & Geometric Algorithms - Eric BÉCHET - [60h Proj.]
B2 Q1 20 20 [+] 5

PROJ0011-2
Personal student project (english language) - Georges DE PELSEMAEKER, Pierre DUYSINX, Liesbet GERIS, Grégoire LÉONARD - [150h Proj.]
B2 TA - - [+] 5

[...] or in either another option

[...] subject to the approval of the Cycle jury, up to 10 credits can be chosen in the ULiège course programme