Durée
25h Th, 10h Pr, 55h Proj.
Nombre de crédits
Enseignant
Langue(s) de l'unité d'enseignement
Langue anglaise
Organisation et évaluation
Enseignement au deuxième quadrimestre
Horaire
Unités d'enseignement prérequises et corequises
Les unités prérequises ou corequises sont présentées au sein de chaque programme
Contenus de l'unité d'enseignement
Latest developments in deep machine learning have enabled great and unprecedented advances in systems for visual recognition, speech and text understanding or autonomous intelligent agents. In this context, this course is a deep dive into the details of deep learning architectures, with a focus on learning end-to-end models for these tasks. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in the field. The course will also tour recent innovations in inference methods, including differential inference, adversarial training and Bayesian deep learning.
Topics to be covered (tentative and subject to change):
- Fundamentals of machine learning
- Multi-layer perceptron
- Automatic differentiation
- Training neural networks
- Convolutional neural networks
- Computer vision
- Recurrent neural networks
- Attention and transformers
- Auto-encoders and generative models
- Generative adversarial networks
- Uncertainty
Acquis d'apprentissage (objectifs d'apprentissage) de l'unité d'enseignement
At the end of the course, the student will have acquired a solid and detailed understanding of the field of deep learning. He/she will have studied both well-established and novel algorithms (in theory and practice) and will also have become familiar with some of the many open research questions and challenges of the field.
Ce cours contribue aux acquis d'apprentissage I.1, I.2, I.3, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, IV.3, IV.4, V.2, VI.1, VI.2, VII.1, VII.2, VII.4, VII.5 du programme d'ingénieur civil en science des données.
Ce cours contribue aux acquis d'apprentissage I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, IV.8, V.2, VI.1, VI.2, VII.1, VII.2, VII.4, VII.5 du programme d'ingénieur civil électricien.
Ce cours contribue aux acquis d'apprentissage I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, V.2, VI.1, VI.2, VII.1, VII.2, VII.4, VII.5 du programme d'ingénieur civil en informatique.
Savoirs et compétences prérequis
Programming experience. Probability and statistics.
Following "ELEN0062 Introduction to Machine learning" before taking this class is strongly recommend.
Activités d'apprentissage prévues et méthodes d'enseignement
- Theoretical lectures
- Reading assignment
- Homeworks
- Programming project
Mode d'enseignement (présentiel, à distance, hybride)
Lectures will taught face-to-face. Projects will be carried out remotely.
Lectures recommandées ou obligatoires et notes de cours
Slides will be made publicly available on GitHub during the semester.
Modalités d'évaluation et critères
Examen(s) en session
Toutes sessions confondues
- En présentiel
évaluation orale
Travail à rendre - rapport
Explications complémentaires:
The evaluation is divided into the following units:
- Exam (50%)
- Homeworks (10%)
- Programming project (30%)
- Reading assignment (10%)
Stage(s)
Remarques organisationnelles
The website for the course is https://github.com/glouppe/info8010-deep-learning
Contacts
- Teacher: Prof. Gilles Louppe (g.louppe@uliege.be)